
1

What is a data layer, and what can it actually do for you?

In this tip sheet, we’ll walk through the key technical components of applying a data layer and demonstrate
how it positively impacts data collection practices.

 Hint:

 This tip sheet is a comprehensive guide to understanding what a data layer is and how it can benefit
 your business. For a more advanced guide detailing best practices for data layer implementation, see
 The Data Layer: From Novice to Expert in 2.5 Seconds With Red Bread Lab.

The Elusive
Data Layer

What Is It and

Why Do I Need One?

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

https://resources.observepoint.com/deploying-new-analytics-marketing-tech/the-data-layer-novice-expert-red-bread-lab

Why the Data Layer Matters

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

2

MartechMap an initiative by & 2022 Marketing Technology Landscape May 2022

visit martechmap.com to search, sort & filter

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://chiefmartec.com/wp-content/uploads/2022/05/state-of-martech-2022-report.pdf

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Data Collection
Without a Data
Layer

3

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Data Layer to
the Rescue

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

4

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

A Simple
Data Layer

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

5

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

Populating Data
Layer Variables
& Values

NOTE

Ever seen this before?

There are more than 9,900 marketing technologies
out there, and the number is constantly growing.
Of course, your company will never use all of them,
but according to Chiefmartec, the average enter-
prise uses an astounding 323 SaaS apps.

These technologies all need data, much of which is
common across technologies, such as page name,
page type, visitor ID, visitor state, traffic source, and
more.

Unfortunately, without a data layer, each market-
ing vendor is responsible for capturing its own data.

With one or two marketing technologies, this may
not be too hard to manage—but what about with
10 or 20 or even 323?

A data layer helps you manage all this data across
technologies. Let’s dive a bit deeper into how it
works.

Marketing technologies gather data through the
use of tags.

Tags can either be hard-coded to a site or deployed
dynamically by a tag management system. When a
page loads or a user performs an action, variables
contained within the tags are populated with
values, which trigger responses by the marketing
technologies (e.g. initiating a remarketing cam-
paign or gathering analytics data).

A vendor-specific tag will produce a collection of
variables that looks something like this:

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

“So what?” you may ask.

Relying on siloed, vendor-specific data collection
has its issues. Here are the problems with this
method

These variables only apply to one vendor.

That means you would need to have a process
of variable declaration and population for each
and every marketing technology. Repeating
this process is redundant.

Deploying 10 times the code will slow down
your website.

“A one second delay in page response can result
in a 7% reduction in conversions”.

Each marketing technology will have slightly
different definitions of user events.

As a result, the data they collect may be
inconsistent across your MarTech stack.

The naming conventions are not very intuitive.

When you have multiple teams across business
units trying to work with less-than-intuitive
variable names, things can get lost, forgotten or
broken.

A data layer is a JavaScript object with a consistent
structure that holds all the information you want to
collect and then passes that information to a tool,
such as an ad or analytics tool.

In other words, a data layer expedites the data
collection process by gathering data into one
central location and then redistributing it to your
various marketing technologies (both first-party
and third-party).

By using a data layer to centralize data before it’s
distributed, you can:

 Standardize data across channels

 Ensure greater governance over data
 collection

 Increase the extensibility of your technologies

 var dataLayer = {
 “pageTitle” : “Receipt Page”,
 “pageURL” : “/pages/checkout/receipt”,
 “pageCat” : “Checkout Pages”,
 “PageCat2” : “”,
 “tranID” : “17658726382”,
 “tranTotal” : “34.95”,
 “tranTax” : “0.00”,
 “tranShipping” : “0.00”,
 “tranShippingMethod” : “USPS”,
 “tranCurrency” : “USD”,
 “tranProds” : “249|398”,
 “tranSKUs” : “249-32|398-12”,
 “tranProdNames” : “Kids Onsie|Kids Lava
 Lamp”,
 “tranCategories” : “Kids|Kids”,
 “tranPayMethod” : “VISA”,
 “visitorType” : “RETURN”,
 “visitorState” : “Logged In”,
 “visitorFirstPurchDate” : “20111205”,
 “visitorFirstProds” : “822”
 }

Remember what a vendor-specific tag would look
like?

 <script>
 s.pageName=“Shop>Holiday”;
 s.eVar55=“Shop”;
 s.prop1=s.eVar55;
 s.events=”event33,event45”;
 s.prop14=”guest”;
 ...
 <script>

Now, compare the following data layer object:

 <script>
 dataLayer=[{
 ‘pageCategory : Shop’,
 ‘categoryType : Holiday’,
 ‘memberStatus : Guest’
 }];
 </script>

“How is this better?” you may ask. Let me show you.

1. The key-value pairs within the data layer are
strings with intuitive labels. This means less confu-
sion among developers and across business units.

2. The variables are vendor-agnostic. You only have
to deploy this once, and then delineate within your
third-party tool which variable corresponds with
each metric. You might think to yourself, “Well this
is just reversing the process! Instead of writing 10
different codes on 1 site, I have to configure 10 tools
to match my 1 code.” That’s true, but consider this:

 a. The data layer puts you in control, allowing
 you to work with intuitive naming conventions
 without having to learn vendor-specific
 coding.

 b. If you use a tag management solution, you
 can configure all of those technologies within
 the TMS itself.

3. Using a data layer allows you to standardize
data definitions because data is only gathered
once.

4. Now you have 1 code instance instead of 10,
which means you have a faster website.

So what’s the ultimate result?

 Improved data quality

 Enhanced customer experiences

 Increased operational efficiency

Need I say more?

Why Implement a Data Layer

One of the key arguments in favor of implementing
a data layer is the way in which its values are popu-
lated, which allows you to 1) standardize data
collection practices, and 2) avoid using DOM-
scraping.

DOM-scraping is a method in which marketing
tags collect values from the Document Object
Model (DOM)—the HTML structure—using Java-
Script selectors (tag name, ids, and classes).

For example, a marketing tag could use JavaScript
or jQuery to pull the value from a form field and
assign it to a variable:

HTML:

 <form>
 <input id=’form-field’/>
 </form>

JAVASCRIPT:

 <script>
 s.pageName = document.getElementBy
 ID(‘form-field’).value;
 </script>

Eliminate DOM-Scraping

DOM-scraping can be handy, because as long as a
website’s HTML elements are well identified, values
can be easily gathered from a page with some
basic knowledge of JavaScript.

But DOM-scraping is also problematic. If website
structure changes due to a redesign or new release,
analytics script that relies on JavaScript selectors
for DOM-scraping may no longer be able to pull
the correct values into your variables.

Enter the data layer. The data layer’s centralized
data is built separately from the DOM, using a
combination of three methods:

1. Hard-coding variable values. Variables and
values that don’t need to be dynamic can be
hard-coded into the data layer.

2. Back-end variable population. When using a
template-based CMS, values can be pushed from
the CMS database into the data layer as the page is
being built.

3. Front-end variable population. Using event
listeners like onclick within HTML tags allows you to
push values into the data layer when an event
occurs:

 <button id='button1' onclick='dataLa-
 yer.push({'event': 'button1-click'})'
 />

 Front-end variable population may just
 seem like DOM-scraping in reverse, push-
 ing data instead of scraping data. But as
 long as your company establishes protocol
 around pushing events into the data layer,
 the marketing technologies will always
 have the data they need.

Below are some basic milestones that will need to
be discussed among the developers, marketers,
and other stakeholders:

 Decide on data layer structure and naming
 conventions (see blog post).

 Develop and deploy code to populate the
 key-value pairs:

 a. Hard-code

 b. Back-end

 c. Front-end

 Remove the vendor-specific code from your
 website pages, templates, or header.

 Update variable documentation, mapping your
 data layer elements to business/vendor require
 ments.

 Perform regular audits for data layer quality
 assurance.

To learn more specifics about implementing a data
layer, check out the on-demand webinar:

 “How to Ensure a Healthy Data Layer”
 by Napkyn Analytics and ObservePoint

or read our eBook:

 The Data Layer: From Novice to Expert in 2.5
 Seconds With Red Bread Lab.

ObservePoint automatically validates and monitors
analytics and digital marketing technologies across
websites and apps, ensuring functionality and
helping enterprises be more efficient and confi-
dent in their data-driven decisions. ObservePoint’s
platform can also be used to audit and validate that
your data layer is appropriately formatted and
loading correctly.

You’ve made a large investment in MarTech. Don’t
you want to make sure that it’s all working as
intended? With ObservePoint you can shave down
on QA time and rest assured that the data you have
is reliable.

SCHEDULE DEMO

Basic Checklist for
Implementing a
Data Layer

ObservePoint &
the Data Layer

6

https://www.observepoint.com/blog/deciding-on-data-layer-design-structure-and-variable-naming-conventions/
https://www.observepoint.com/blog/analytics-testing-with-observepoint-is-an-ongoing-practice/
https://resources.observepoint.com/deploying-new-analytics-marketing-tech/the-data-layer-novice-expert-red-bread-lab
https://www.observepoint.com/reports/the-data-layer-novice-expert-red-bread-lab/
https://www.observepoint.com/request-a-demo/

